产品FAQ
首页 > 服务与支持 > 产品FAQ

q 【Trans 实验常见问题和解答】原核表达 -- 如何使外源基因高效表达?

a 解决方案:
(1)表达质粒的优化和设计:构建表达质粒时首先要考虑使目标基因的翻译起始密码ATG 与 SD 序列之间的距离和碱基组成处于一个适当的范围内。核糖体结合位点序列的变化对 mRNA 的翻译效率有显著影响,具体表现为: SD序列 UAAGGAGG的翻译效率要比 AAGGA 高3-6倍;翻译起始密码 ATG 与 UAAGGAGG的最适距离是6-8个碱基长度,与 AAGAA 的最适距离是5-7个碱基长度;ATG 与 UAAGGAGG 至少相隔 3-4个碱基,与 AAGAA 至少相隔5 个碱基mRNA 的翻译才能进行;ATG与SD序列之间的碱基组成为A,T 碱基丰富时,mRNA 翻译效率较高。其次,尽量提高核糖体结合位点本身和附近的序列中 A/T 碱基的含量,降低mRNA 5’ 端形成的“茎环”结构的可能性,也是构建表达质粒时需要注意的事项。在必要的情况下,还可通过定点突变, PCR 等技术改变个别关键的碱基来破坏mRNA 5’端的“茎环”结构。把目标基因设计成 多顺反子结构,在大肠杆菌本身的高效翻译起始元件后加上第二个SD序列和目标基因,一起插入表达载体。这一方法通常适用于目标基因 5’端序列容易形成二级结构,而又不宜改变其序列的情形下。再者,在构建表达质粒时,充分利用各个基因的结构特征和特点,注意引入翻译增强子序列。
(2)共表达大肠杆菌稀有密码子 tRNA 基因:由于同义密码子的使用频率与细胞内对应的tRNA的丰度有正比关系稀有密码子对应的tRNA的丰度很低,有可能在翻译过程中发生中止和移码突变。可采用1.通过基因突变把稀有密码子改变为其他使用频率高的同义密码子;2.在表达系统中共表达稀有密码子tRNA 基因,以提高大肠杆菌细胞内稀有密码子 tRNA 的丰度。
(3)提高目标基因mRNA和目标基因产物的稳定性:利用蛋白转运系统把目标蛋白最终累积在周质空间,或分泌到培养基中;采用缺乏某些蛋白水解酶基因的缺陷株作为宿主菌;对分子量较小的目标基因进行融合表达或串联聚合表达;共表达能提高特定目标蛋白稳定性的辅助因子,如分子伴侣基因;对蛋白质序列中的蛋白水解酶敏感区域和识别位点进行改造;在较低的温度下培养菌体和优化发酵条件。
(4)高密度发酵和工程化宿主细胞:大肠杆菌高密度发酵是大规模制备重组蛋白质过程中不可缺少的工艺步骤。其目的是在单个菌体对目标基因的表达水平基本不变的前提下,通过单位体积的菌体数量的成倍增加来实现总表达量的提高。目前常用的发酵方式有:恒定培养、流加补料培养、连续培养三种。
工程化宿主细胞:
1.构建出产乙酸能力低的工程化宿主菌是解决高密度发酵后期由于菌体的生长密度较高,培养基中的溶氧饱和度往往比较低,氧气的不足导致菌体生长速率降低和乙酸的累积,乙酸的存在对目标基因的高效表达有明显的阻抑作用的根本途径。利用透明颤菌血红蛋白能提高大肠杆菌在贫氧条件下对氧的利用率的生物学性质,把透明颤菌血红蛋白基因vgb 导入大肠杆菌细胞内以增加其对溶氧的宽容度。从而降低菌体产生乙酸所要求的溶氧饱和度阀值;用基因敲除技术缺失大肠杆菌的磷酸转乙酰酶基因 pta1 和乙酸激酶基因ackA,使从丙酮酸到乙酸的合成途径被阻断;改变代谢流的方向,通过共转化把枯草杆菌、酿酒酵母的乙酰乳酸合成酶基因 alsS,单胞菌的丙酮酸脱羧酶基因 pdc1 和乙醇脱氢酶基因 adh2 导入大肠杆菌,使丙酮酸的代谢有选择地向生成3-羟基丁酮或乙醇的方向进行。
2.构建蛋白水解酶活力低的工程化宿主菌: rpoH基因编码大肠杆RNA聚合酶的r32亚基,r32 亚基对大肠杆菌中多种蛋白水解酶的活力有正调控作用。rpoH 基因缺陷的突变株己经被构建,研究结果表明它能明显提高目标基因的表达水平。

q 【Trans 实验常见问题和解答】原核表达 -- 如何实现目标蛋白的外分泌表达?

a 解决方案:
(1)与大肠杆菌本身的外泌蛋白基因融合表达;
(2)与一些能提高细胞外膜通透性的因子融合或共表达;
(3)改变培养基的成分。但方法仅对外泌分子量较小的蛋白有效,而且外泌效率一般都比较低。

q 【Trans 实验常见问题和解答】原核表达 -- 在分泌型异源蛋白的表达中,附加的甲硫氨酸也可能改变蛋 白质的免疫性质和药理性质,应如何去除?

a 解决方案:
⑴ 在表达系统中共表达甲硫氨酸氨肽酶基因。
⑵ 在分离纯化后在体外用外肽酶处理。但它们都对与甲硫氨酸相邻的氨莱酸残基类型有一定要求,因此在使用上有一定的限制。

q 【Trans 实验常见问题和解答】原核表达 -- 重组质粒的不稳定以及目的基因宏观表达水平的下降。如何解决?

a 解决方案:
将重组质粒的扩增纳入可控制的轨道:
(1)采用条件控制拷贝数的表达载体,一类是基于质粒Rl基础上的单复制起始表达载体;另一类是双复制起始表达载体,一个复制起始来源于Co1EI,另一个来源于质粒pSC101;
(2)将外源基因插入到大肠杆菌的染色体中chopin等报道,将分泌型IGF-I的基因,采用串连式的重复方式插入到大肠杆菌染色体的attλ位点,在不添加抗生素诱导的条件下,采用高密度发酵,IGF-I基因十分稳定。

q 【Trans 实验常见问题和解答】原核表达 -- 为了提高外源基因的表达水平,对表达载体如何进行改进?

a 解决方案:
1)可诱导拷贝数的表达载体。质粒的拷贝数由培养条件控制,当需要增菌培养时,质粒的拷贝数很低,每个细胞仅1-5个拷贝,经适当条件诱导后,载体拷贝数可达每个细胞100-500个拷贝。这种表达载体的优点减小了载体质粒的丢失,保证质粒在大肠杆菌中的稳定性,对外源基因的表达调控更为严格,有利于基因的高效表达。这里主要有两类条件控制拷贝数的表达载体,一类是基于质粒Rl基础上的单复制起始表达载体;另一类是双复制起始表达载体,一个复制起始来源于Co1EI,另一个来源于质粒pSC101。
2) 多顺反子型表达载体。这种表达载体的设计在于将第二个顺反子的SD序列插入在第一个顺反子的终止密码子TAA之前,第一个顺反子要尽量短,后面接目的基因的起始密码子ATG。由于第一个顺反子翻译地有效起始,使得大量的核糖体结合在多顺反子mRNA上,促进了核糖体对第二个顺反子的SD序列的识别和翻译起始,从而提高了表达水平。
3) 带翻译增强子的表达载体。atpE基因SD序列上游的一段序列对其表达具有促进作用,它位于SD序列上游2-7bp处,这段序列在atpE基因的mRNA上核昔酸顺序为UUUUAACUGAAACAAA,将其插入到其它表达载体内构建的新型表达载体,对Β-干扰素和IL-2的表达提高了6-8倍。T7噬菌体基因10的mRNA中有一个翻译增强子,它是一段与16sRNA的互补序列,提高了核糖体与翻译起始区的亲和力,将其插入SD序列上游或起始密码子下游均可提高翻译起始效率。